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The transition to baroclinic chaos on the /?-plane 
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Experiments on two-layer P-plane flows are described. The regime diagrams for both 
easterly and westerly forcing indicate complex scenarios by which baroclinically 
unstable flows can become chaotic as the forcing is increased. The transition sequence 
can involve as many as thrce different vacillation mechanisms, but also exhibits the 
periodic window phenomena prevalent in many model dynamical systems. The 
fractal dimension of the chaos a t  low rotational Froude number F is measurable and 
is somewhat less than 3. The dimension increases as B’ is raised. A six-wave low-order 
model, while successfully predicting some of the observed vacillations, gives a 
relatively poor description of the chaos. 

1. Introduction 
There has been much recent study of the transition between ordered and chaotic 

states in fluid systems. Among those of geophysical interest, considerable recent 
work has focused on modulations and other types of nonlinear oscillations in 
baroclinically unstable systems. The annulus experiments of Buzyna, Pfeffer & 
Kung (1984) indicate that two types of vacillation precede the onset of chaotic 
motions as the basic rotation rate is increased. These two vacillations, amplitude and 
structural, also occur in the highly truncated model of Weng, Barcilon & Magnon 
(1986), the results of which bear some qualitative resemblance to the annulus 
experiments. The amplitude vacillation observed in the annulus appears to be of the 
energy-cycle type. Pedlosky (1970, 1971, 1972) developed a theory for this type of 
vacillation wherein the wave amplitude and the zonal flow periodically exchange 
available potential energy without an appreciable change of wave shape. The 
structural vacillation is a fluctuation in the shape of the wave field that is generated 
by the mixture of two radial modes with the same azimuthal wavenumber. The 
amplitudes of the two components of the travelling wave field are quasi-steady, but 
interference due to phase speed differences between the two generates a periodic 
tilting of the surface streamlines. In  Weng et aZ.’s model these radial modes 
interact to produce a weak wavenumber zero (zonal flow) oscillation as well. 

Hart (1985) studied the transition to chaos on the f-plane in a two-layer geometry. 
At small values of the rotational Froude number where azimuthal wavenumbers one 
and two are linearly unstable, the transition to chaos involves amplitude vacillation, 
with its characteristic strongly-coupled oscillations of a nearly single-component 
wave field and the zonal flow. The zonal flow oscillation period-doubled at  least twice 
as the forcing was increased, and long-period chaotic oscillations appeared a t  small 
friction. Further decreases of friction did not produce a reverse cascade to a periodic 
or steady regime. 
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In the two-layer geometry the structural vacillation is not likely to  occur because 
the neutral curves for the linear eigenfunctions with the wavenumber/radial- 
modenumber pairs (n, m) = ( 1 , l )  and (1 ,2)  are very far apart in parameter-space. 
That is, disturbances with the same wavenumber but two distinct radial modes are 
never close to being simultaneously neutral. For example, by the time the second 
radial mode of wavenumber- 1 becomes neutral, the ( 1 , l )  disturbance is very 
unstable. So also are the higher wavenumber modes ( 2 , l )  and ( 3 , l ) .  This effect is 
illustrated in figure 2 for the P-plane. Thef-plane result is similar (Hart 1985). Thus, 
in the two-layer experiments in a full cylinder the linear theory strongly suggests a 
competition between different wavenumbers of the lowest radial mode, not, between 
two identical wavenumbers with different radial modes. Although these arguments 
would be strengthened by considering the stability of finite-amplitude steady-wave 
states to other modes, in fact thef-plane observations (e.g. Hart 1973) show several 
instances of ‘ wavenumber vacillation ’, which is precisely a periodic out-of-phase 
oscillation of the amplitudes of two different azimuthal wavenumbers, and no 
evidence of structural vacillation. 

The two-layer model also lacks the potential for baroclinic interference vacillation 
between waves of the same azimuthal wavenumber but different vertical structures 
(and hence different phase speeds). This is simply because the two-layer model has 
the same vertical structure for all baroclinic waves. One needs to go to a three-layer 
model (Moroz & Brindley 1982) or to a continuous model with a nonlinear vertical 
basic stratification (Barcilon & Drazin 1984) in order to obtain interference 
oscillations of the type postulated by Lindzen, Farrel & Jacqmin (1982). There is the 
possibility of interference between barotropically unstable and baroclinically 
unstable modes. The measurement technique filters out barotropic modes, and the 
basic state is barotropically stable. Thus such an interference phenomena would be 
higher order than those produced by interactions between baroclinic modes. 

However, recent observations and model calculations by Ohlsen & Hart (1988) 
have shown that a type of interference vacillation can occur in the two-layer system 
when the p-effect is significant. Two waves with different wavenumbers, different 
phase speeds, but the same radial cross-stream modal structure were predicted to 
coexist as a finite-amplitude mixed-wave equilibrium if P is large enough (Mansbridge 
1984). This equilibration process would be the two-layer equivalent of wave 
dispersion in the annulus (e.g. Pfeffer & Fowlis 1968). Ohlsen & Hart show, however, 
that this equilibrium is always distorted by a low-frequency periodicity generated by 
the action of the nonlinearly forced sidebands of the fundamental dispersive waves, 
which can project onto the wavenumber zero zonal flow. The low-frequency 
vacillation occurs in the zonal flow as well as in the wave field, and typically increases 
in strength as the flow becomes more supercritical. No similar phenomenon has been 
observed on the f-plane, presumably because no (weakly nonlinear) mixed-wave 
states are permitted there (Hart 1981), except perhaps in the case of resonance where 
the double Hopf bifurcation analysis breaks down. 

It thus appears that the P-plane two-layer geometry can contain at least two 
vacillatory phenomena : the normal amplitude vacillation, and the just mentioned 
‘nonlinear interference vacillation ’. It is of interest to see how these may interact and 
become involved in the transition to chaos on the P-plane, and this is the main topic 
of the present paper. The two-layer geometry yields a consistent quasi-geostrophic 
P-plane, and results from laboratory experiments provide a useful calibration for 
theoretical and numerical models. In  this spirit, a short discussion of some low-order 
model results is given a t  the end of the paper. The main focus is, however, on the 
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intricate interweaving of periodic and chaotic motions as the friction parameter is 
changed, on the differences between the response of the system for easterly and 
westerly forcing, and on the low-dimensional (but still unexplained) nature of the 
chaos observed at  low rotational Froude numbers. 

The paper is organized as follows. Section 2 describes the experimental technique, 
and $ 3  outlines the experimental results, concentrating on a few typical examples of 
multiply periodic flows. Section 4 describes some evidence for the existence of low- 
order attractors. This is followed by a discussion of the numerical model results and 
a statement of the conclusions. 

2. Experimental procedures 
The cross-section of the full-cylinder experiment is shown in figure 1, and the 

experimental data is given in table 1. The fluids are a low-viscosity silicone oil (top) 
and a water-methanol mixture (bottom). The basic rotation is chosen so that the 
parabolic interface equilibrium in the absence of driving is exactly half as strong as 
the lid parabola. Thus vertical vortices in both layers are stretched as they are 
displaced radially outwards and this gives the p-effect. The topographic p-effect has 
a magnitude of 

d 

2H, 
p’ = - = 0.239, 

where d is the extent of the upper lid parabola and Hi is the layer depth(s). 
In geophysical applications has the same significance as the non-dimensional 
P-parameter 

where 8 is the latitude, L the channel width or horizontal lengthscale of the 
phenomenon, and R, is the radius of the planet. The laboratory value is thus typical 
of many geophysical flows. 

A number of constant parameters are given in table 1. Obviously the lid geometry 
fixes the equivalent p-effect, and the viscosity parameter x, being proportional to the 
square root of the viscosity ratio, is nearly constant, even as the methanol 
concentration is changed slightly to vary the density ratio. The equilibrium depths 
H ,  and H ,  are set equal to within 1%. The variable parameters are the rotational 

4QZL2 
Froude number 

F = - ,  
g’H1 

wH, 

and the friction parameter 

&=-, (v,QP 

which is essentially the ratio of the square root of the Ekman number to the Rossby 
number based on the differential rotation w.  I n  ( 1 )  g’ is the reduced gravity gAp/ji .  

There are three small resistance measuring probes placed along a diameter. Each 
probe is a 0.003 in. wire stretched through the interface between the silicone oil and 
methanol-water mixture. Two probes are a t  radii of r = 0.74L and located at  
opposite sides of the tank. The third is on the axis. The ‘axis-probe’ measures only 
the zonal flow component of the height field, because all components of a 
Fourier-Bessel expansion of the interface height with wavenumber greater than zero 
vanish at r = 0. The off-axis ‘wave-probes’ can be summed or subtracted to give the 
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FIGURE 1 .  Cross-section of the two-layer system. The dashed lines show the locations of the 

interface height probes. See table 1 for definitions and values of the various parameters. 

contributions of the even or odd non-zero wavenumbers. All three probes arc 
elements of individual a.c.-brides, and operate simultaneously on their own separate 
carrier frequencies. The outputs are bandpassed filtered to  eliminate cross-talk. 
Ohlsen ( 1988) provides further experimental details. 

Experiments are carried out in a quasi-static run-up or run-down mode. The basic 
rotation (about 2 s per revolution) is established and the differential rotation w is set 
so that Q is in the axisymmetric regime. The differential rotation is stepped by 1-5 Yo 
every 2-4 h so that over a period of several days a traverse is made through 
decreasing Q a t  constant F .  For some runs Q is then slowly increased from low values 
out into the axisymmetric regime. Then the methanol-water fluid density is changed 
slightly to attain a new Froude number and another experiment is run. The 
experiments were controlled by a PDP1123 computer and the probe data were 
digitized and logged on tape for future processing. 

The major experimental limitation (apart from time) is that  small fluctuations in 
the basic rotation (of order a few tenths of a percent), as well as long-time room 
temperature changes that affect the Froude number and the electronics, limit the 
effective resolution in Q to about 1 YO. The bifurcation structure of the /?-plane flows 
may indeed be more complex than illustrated here, but we feel confident that i t  is not 
less complicated. That is, further stability in the experiment would not remove any 
of the regimes reported here. That the different types of motions shown in $3  occur 
for both increasing and decreasing Q (without significant hysteresis), and that similar 
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Dimensional parameters 

Hi = 13.0 cm 
L = 22.54 cm 

v, cmz/s 
g = 979.6 cm/sz 
d = 6.23 cm 
52 = 3.465 rad/s 
w rad/s 

Pi g/cm3 

mean depth of each layer 
radius of cylinder 
fluid density 
kinematic viscosity 
gravitational acceleration 
depth of lid parabola 
basic rotation 
differential rotation 

Coordinates 

non-dimensional radius, scaIed by L 
azimuthal (polar) angle 
radial velocity, scaled by Lw 
azimuthal velocity, scaled by Lw 
time, scaled by w-' 

Non-dimensional parameters 

B = d / H ,  
APlP = 2((2 --Pl)/(PZ + P I )  x = ( % / V I ) P  viscosity ratio 
K = H J H ,  depth ratio 
E = w/2Q Rossby number 
E = v,/2,52Hz, Ekman number 
Q = (&!t)f/€ friction parameter 
F = 4D2L2/g( A p / p ) H ,  Froude number 

planetary vorticity gradient 
stratification- 

TABLE 1. Basic parameters and scaling for experiment and model. The top layer is denoted by 
i = 1, and the bottom by i = 2. 

structures usually span more than one adjacent value of F ,  indicate that the 
observations are reasonably robust. 

3. Experimental results 
Figure 2 is one main result of this study. It shows the locations of the various 

regimes on the @-plane for easterly forcing, o < 0. Runs were done a t  the constant 
values of F indicated by the arrows a t  the right-hand side of the graph. The density 
of points along each track is much higher due to the 1-5 % steps in Q .  No significant 
hysteresis was noticed, on increasing or decreasing Q ,  even for the periodic windows 
to  be illustrated below. 

There is baroclinic instability for easterly forcing in the experiments, as illustrated 
by the favourable comparison between the observed transition from axisymmetric to 
wavy flow and the theoretical predictions from a two-layer quasi-geostrophic model 
(thin lines). In  fact, in the two-layer model with a solid rotation basic state there is 
no difference in the linear neutral curves for easterly and westerly forcing for 
K ,  2 %  1 (the equations are shown in Ohlsen & Hart 1988). 

Summarizing the situation, a t  low F where azimuthal wavenumber-1 is the only 
unstable linear mode, there is no nonlinear interference vacillation (NIV). The 
periodic regions are dominated by amplitude vacillations that have lower frequencies 
than the NIV. On the left-hand side of the NIV region a t  larger F the higher 
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FIGURE 2. Regime diagram for easterly forcing on the P-plane. Sn denotes a steady wave with 
azimuthal wavenumber n, XIV denotes nonlinear interference vacillation, P denotes singly 
periodic amplitude vacillation, NP  denotes noisy periodicity, and PW denotes periodic windows. 
V is a narrow region of wavenumber vacillation, and C is a chaotic region without a dominant 
periodicity. The thin lines illustrate the linear neutral curves with the wave and mode numbers 
shown. 

wavenumbers dominate the wave field. On the more strongly forced right-hand side 
the opposite is true. In fact for moderate F the NIV gives way to a steady 
wavenumber- 1 flow a t  fairly high sppercriticality. The P-region is singly periodic. But 
within the NP/PW region there are complex periodicities intermixed with chaos. 
Rather than clutter up the diagram with more regions, we give a set of examples that 
are intended to characterize the types of motions observed in these /?-plane 
experiments. 

Figure 3 illustrates the amplitude vacillation of a single-wavenumber at low F. 
Subtracting and adding the two wave-probes indicates that the odd azimuthal 
wavenumbers (dominated by n = 1 )  have 8 times the amplitude of the even waves 
(dominated by n = 2) .  Note that the frequency of the modulation is about 0.05, or 
roughly twenty lid-periods per cycle. The electronics and plots are set up so that the 
most positive excursions of the axis-probe correspond to the weakest zonal flow 
baroclinicity (but note that for positive Q the opposite is true). Therefore it is seen 
that the wave amplitude maxima are positively correlated with the zonal 
baroclinicity minima (the source of the baroclinic instability). This is another 
signature of the amplitude vacillation where the waves and zonal flow exchange 
available potential energy. 

As - Q decreases the amplitude vacillation in figure 3 period doubles, then becomes 
chaotic. An example is shown in figure 4. Note that figure 4 ( a )  shows a single spike 
at  a frequency of about 0.04 that is more than a factor of lo4 above the background. 
We call this a monochromatic (period-1) vacillation. Figures 4 ( b )  and 4(c)  show a 
period-2 vacillation and a noisy-periodic state respectively. In figure 4 (c) the 
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FIUURE 3. Data at F = 16.7, Q = -0.224. (a) shows the wave probe, ( b )  the axis probe 
and (c) the spectrum of the axis-probe signal. 
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FIGURE 4. Spectra of the axis probe at F = 16.7. In (a )  Q = -0.0201, in ( b )  Q = -0,0199, and 
in (c) Q = -0.0189. 
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background broadband component of the spectrum has risen by a factor of 100 over 
the measurement background. 

As -Q  decreases further the broadband rises slightly until Q = -0.0142, where a 
stable period-3 zonal flow orbit is observed (figure 5a-c). The wave-probe would show 
a period-3 2-torus as the travelling-wave frequency is incommensurate with the zonal 
vacillation. On the more inviscid side of the period-3 response is a weakly chaotic 
period-2 regime that retains weak vestiges of period-3 (figure 5d-e). 

This noisy periodicity continues until Q = -0.0115 when the period-2 signal 
becomes very large and the system settles into a periodic orbit. Figure 6 shows what 
this looks like. By frequency tracking with Q we can tell that the 0.036 peak is the 
fundamental and the sub-harmonic a t  about 0.018 is simply very strong. It can be 
seen that the minima of the zonal flow time trace (the maximum zonal baroclinicity) 
coincide almost exactly with the minima of the wave envelope, again a characteristic 
of energy-cycle amplitude vacillation. 

With more driving the spectra show an elevation of the background and a 
broadening of the main peaks of figure 6(c) without any obvious further period- 
doublings. This is illustrated better in $4, where i t  is also suggested that the chaos 
here is relatively low-dimensional. Figure 7 shows what the various signals look like 
at  slightly smaller -Q. 

At F = 25.4 a broad regime of nonlinear interference vacillation (NIV) intrudes 
into the steady wave regime. NIV is discussed in detail in Ohlsen & Hart (1988). We 
give one example here in order that  we may compare its characteristics with those 
of amplitude vacillation. Figure 8 ( a )  shows a typical time-trace of a wave-probe 
during NIV. Figure 8(b )  shows that this time-trace is made up of two fundamental 
waves with different (non-resonant) frequencies f, and fi and wavenumber n1 = 1 and 
n2 = 2. The nonlinear interaction of the two fundamentals produces an azimuthal 
wavenumber-1 sideband with frequency f2- f,. This nonlinear product can then 
interact back with the wavenumber- 1 fundamental (actually with its conjugate), to 
give a zonally invariant response forced at the NIV frequency fz - 2fi, or equivalently, 
2f,-f,. This vacillation frequency dominates the zonal flow response, (figure 8c), but 
also shows up as a modulation frequency for the wave field itself. The NIV frequency 
is a factor five or so higher than typical amplitude vacillation frequencies in these 
experinien ts. 

As Q changes the relative frequencies f,(Q) and fz(Q) also change, so that for some 
points in parameter space 2fl-fz can be close to a low-order rational fraction off, (or 
f,). Figure 9 shows an example where 2f1 - f z  happens to  be equal to 0.2 fi (within the 
resolution of the experiment). Plots of the frequency ratio vs. Q (not shown) indicate 
that there may be a flattening near f&' = 0.5. Such a flattening would imply a 
frequency entrainment. However the current data points were not sufficiently close 
(in Q )  to unambiguously resolve this question, for the frequency locking, if it exists, 
occurs over a narrow band of Q. 

As - Q decreases towards the right-hand side of the NIV region, wavenumber 2 gets 
weaker and wavenumber 1 gets stronger. This reflects a tendency for the preferred 
wave at  a particular F to have a wavelength longer than that suggested by the linear 
neutral curves (e.g. Hart 1981). There is then a band of steady states, involving a 
dominance of wavenumber 1, sandwiched between the NIV region and the longer- 
period amplitude vacillation region which occurs a t  smaller Q .  

Further decreases of - Q  towards the inviscid limit (Q = 0) bring the system into 
amplitude vacillation. The transition sequence proceeds then more or less as a t  F = 
16.7, except that a weak quasi-periodicity was observed over values of Q surrounding 
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FIGURE 5(u--c). For caption see facing page. 
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FIGURE 5. Period-3 response a t  P = 16.7, Q = -0.0142. (a) shows the wave probe, ( b )  the axis 
probe, and (c) the axis-probe frequency spectrum. At slightly smaller Q the system becomes noisy. 
In (d )  the axis probe is shown for Q = -0.0139, and ( e )  shows its frequency spectrum. 

-0.0227. This is illustrated in figure 10. It is not known whether this might have 
been experimentally induced. It persists from -0.0227 to -0.0213 and causes the 
period-3 response a t  -0.0222 and the period-2 response at less negative Q to breathe 
in and out slightly a t  the very long modulation frequency (0.007). 

Figure 11 shows a highly chaotic state and illustrates the much broader axis 
spectrum typical of the region outside the noisy-periodic band. The negative 
correlation between the axis-probe and the envelope of the waves is still strong. 

At F = 30 evidence was found for a sort of wavenumber vacillation. This was 
somewhat surprising because we had expected to see a region where the NIV and 
amplitude vacillation regions overlapped to produce a 2-torus on the axis (as in the 
model, see below). Instead the processes that maintain the mixed-wave NIV regime 
appear to break down, but instead of leading to a steady single-wave state, the two 
waves vacillate. This is shown in figure 12. There again is the correlation with the 
minima of the axis signal and the minima of the wave envelope. The axis spectrum 
is dominated by a low-frequency 0.048. Just to the left in parameter space, a t  
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FIGURE 6. Strong period doubling at F = 16.7, Q = -0.0115. (a) is the wave probe, (b )  the axis 
probe, and (c) the axis-probe spectrum. 
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FIGURE 7. Noisy periodic chaos a t  F = 16.7, Q = -0.0112. (a )  is the wave probe, ( b )  the axis 
probe, and ( c )  the axis-probe spectrum. 
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FIGURE 8. A nonlinear interference vacillation. F = 25.4, Q = -0.0412. (a)  is the wave probe, 
( b )  the wave-probe spectrum, and (c) the axis-probe spectrum. 
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FIQURE 9. Phase-locked interference vacillation. F = 25.4, Q = -0.0324. 

3 

2.5 

B 
% 2  

2 
v1 
.3 

1.5 

I I I I 
0 200 400 600 800 

Time (lid-periods) 

37 

I 1 I I 
0 0.05 0.1 0.15 0.2 

Frequency ( 1  /lid-period) 

FIQURE 10. Quasi-periodic flow. F = 25.4, Q = -0.0227. (a )  is the axis probe and ( b )  is its spectrum. 
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FIGURE 1 1 .  Highly chaotic flow. F = 25.4, Q = -0.0211. (a) is the wave probe, (b) is the axis 
probe and (c) is the axis-probe frequency spectrum. 
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Q = -0.045, the NIV axis frequency is 0.456 or 3f2 - 2f3. Figures 12 ( c )  and 12 ( d )  show 
the even and odd wavenumbers. The odd ones, mostly low-frequency wavenumber 1, 
modulate in quadrature with the even ones in a manner typical of models and other 
experiments showing wavenumber vacillations (e.g. Hart 1973). That is, wave- 
number-2 has maximum amplitude when wavenumber-1 is at  a minimum, and vice 
versa. 

Figure 13 shows the regime diagram for westerly (w > 0) forcing. Although the 
gross structure including the location of the periodic, noisy periodic, and chaotic 
regions is similar, there are several major differences between this regime diagram 
and that for easterly forcing. The NIV region is pushed to much higher F values. The 
NIV regime a t  lower F with easterly forcing is replaced by a steady phaselocked state 
(L) that gives way to an amplitude vacillation that involves both wavenumber 1 and 
wavenumber 2, which are locked in phase. 

Figure 14 illustrates these phaselocked states. Figure 14 ( a )  shows the time trace 
of a steady state in which wavenumber 1 and wavenumber 2 propagate around the 
tank in concert. The phase speeds are the same and there is no interference 
vacillation. As Q decreases the amount of wavenumber 2 in the steady states does not 
decrease, relative to wavenumber 1, as it typically does for easterly forcing. A 
phaselocked amplitude vacillation is shown in figure 14(b). This is illustrated in 
figures l4(c) and 14(d) where i t  is seen that the even wavenumbers (principally 
number-2) dominate this vacillation which is occurring on the boundary between 
single-period and period-doubled response. During the vacillation the envelopes of 
the odd and even wavenumbers modulate simultaneously and in phase. The total 
wave amplitude is large when the zonal baroclinicity is small. 

Figure 15 gives a last example of a period-doubling transition to chaos. In this 
period doubling sequence wavenumber-2 dominates the non-zonal field. The wave 
attractors in this cascade are a sequence of period-doubled tori. A period-4 limit cycle 
is evident in the zonal response, but period-8 is not clearly observed. This could be 
due to its absence so that the transition sequence is made of a finite three-step period- 
doubling. On the other hand, the period4 component might be too small in the face 
of measurement noise and small undesired parameter variations. This issue can only 
be addressed with a better controlled experiment. In a manner similar to the 
situation for easterly forcing, the chaos that results from this period-doubling 
cascade is broken, as Q is decreased, by a period-3 window, occurring here a t  
Q = 0.0267. 

4. Low-dimensional attractors 
Lorenz (1963) introduced the idea of reducing the study of a differential system to 

a mapping made from the maxima or minima of the zonal flow correction (in his 
problem the zonally averaged temperature was used). This mapping is equivalent to 
a Poincar6 section. It is possible to repeat Lorenz’s procedure to investigate the 
structure of hopefully low-dimensional mappings that might result from the data if 
the original dynamical system is of reasonably small dimension. 

Figure 16 shows four ‘min-maps’ constructed for several values of Q a t  F = 16.7 
in the noisy period-2 regime. The maps indicate a broadening of the two minima 
clumps associated with period-2 a t  -0.01 13, but along a curve which develops into 
a rounded map similar to those of Hart (1986), who studied the effect of physical 
asymmetries on the original Lorenz cusp-map. The qualitative agreement is most 
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likely coincidental, but maps with similar shapes have often been found associated 
with low-dimensional chaos in model systems. 

The lower bound on the fractal dimension or capacity can be estimated from a data 
set by calculating the correlation dimension of Grassberger & Procaccia (1983a, b,  
c) .  The details of this computation are given in Ohlsen (1988). Table 2 shows the 
dimension estimates. For observed per iod ic  $ow on the axis with F = 17 and 
Q = -0.022, -0.020, and -0.013 (period-3) the correlation dimensions are near 1.0. 
Of course the wave field adds one additional dimension so the system correlation 
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dimension is near 2.0. That is, the wave-probe mapping is two-dimensional (a 2- 
torus), precisely what one would expect because the travelling-wave frequency is 
incommensurate with the energy-cycle modulation. The relatively low dimensions of 
the flows at  low F agree with the organized structure of the mappings in figure 16. 
The dimensions of the underlying chaotic attractors for the whole system are 
bounded below by a number of order 2.5f0.2 when F = 17 and -Q  > 0.01. At 
higher F ,  however, the dimensions are larger. Unfortunately the data are such that 
reliable dimension estimates can only be obtained if the xonal-$ow dimension is less 
than about 2.5. It would be most interesting to determine how fast the dimension 
increases with F over a larger range, and thus to estimate what magnitude it might 
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take for F-values more appropriate to the atmosphere (around 50) or the ocean 
(around 250). In practice, such a determination is as yet impossible. Almost infinite 
precision and measurement time would be required. 

5. Spectral model predictions 
The laboratory results were compared with results from a low-order numerical 

model. This model is described in Ohlsen & Hart (1988) and more completely in 
Ohlsen (1988). It is a quasi-geostrophic two-layer model on the (topographic) P-plane 
with top, bottom, and interfacial Ekman layers. A spectral expansion is made in 
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FIGURE 14. Phase-locked steady waves at F = 23.2, Q = 0.412 (a), and phase-locked vacillations 
at F = 23.2, Q = 0.307. ( b )  shows the wave probe, (c) the odd wavenumbers, and (d )  the even 
wavenumbers. 

terms of the eigenfunctions of the linear free-slip stability problem. These are simply 
products of Bessel functions with m-extrema across the radius, and Fourier 
harmonics with wavenumbers n in azimuth. The correction to the zonal flow ( n  = 0) 
is similarly expanded in Bessel functions of zeroth order except with vanishing 
circulation at  r = 1 as a boundary condition. 

Models of this type have been extensively investigated under the ‘single-wave’ 
assumption. Only one (n = N) wave is retained. Success with these models is  achieved 
in the steady-wave regime, and in the amplitude vacillation in some circumstances. 
However, the transition to chaos, though occurring via a finite period-doubling, is 
predicted a t  a value of F that far exceeds the observed values for a particular Q (Hart 
1986). One reason for this is that to get chaos or even periodic oscillations in such 
single-wave models it is necessary that the fixed points, representing steady waves, 
be unstable (or nearly so). The single-wave models tend to be similar to the classic 
three-component convection model of Lorenz (1963). But with top, bottom, and 
interfacial Ekman layers all included, the effective Prandtl number for thc baroclinic 
flow is less than 2, unless F is quite large. Because the effective aspect here is about 
1, the fixed points do indeed remain stable until F becomes very large. The critical 
value of the friction needed to destabilize the fixed points for wavenumber-1 
disturbances and equal viscosities can be written (following Hart 1986) as 

Here c is related to the Froude number by 

c = p(Z+e), 

with e being the supercriticality 
2F - a2 

a2 
e = -  

The critical F ,  for linear inviscid disturbances, is related to the total wavenumber a 
by F,  = 0.5 a2 so the smallest that  e can be is zero. The factor p is a function of the 
relative magnitudes of top, bottom, and interfacial friction. It is equal to 1.0 if there 
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is no interfacial friction, but is 0.5 if Ekman layers on bot,h sides of the immiscible 
interface are included, with equal viscosities in both layers. 

If p = 1.0 then c increases from 2.0 as the flow becomes supercritical. It is then 
easily seen from (3) that there always is a real value of &, for any value of E ,  however 
small. However, if there is interfacial friction and ,u = 0.5, then c increases from 1 as 
E becomes greater than zero. However the right-hand side of (3) is negative until 
c = 2.618. Thus the fixed points are stable until e = 3.224, or F = 2 . 1 1 4 ~ ~ ~ .  This is 
roughly four times the critical values F = F, for Q = 0. 
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Q F = 17.3 F = 20.7 

-0.022 1.0k0.2 1.0 
-0.020 1 .o 1.8 
-0.018 1.3 1.8 
-0.016 1.3 2.0 
-0.013 1 .1  1.5 
-0.010 1.5 > 2.5 

TABLE 2.  Zonal flow correlation dimensions D, 

In  the experiments, chaos is observed at F of order 12, or about 1.7 times its 
inviscid critical value of F, = 6.88 for n = m = 1. In order to get chaos or even 
periodicity in low-order models it is necessary to counter this severe effect of the 
number of dissipation layers on the stability of the flow. Of course, a t  four times the 
critical value a weakly nonlinear or single-wave expansion is not expected to work 
very well. Using multi-wave expansions Hart (1982), and more extensively, Pedlosky 
& Polvani (1987) argue that wave-wave interactions can be destabilizing. Because of 
this, and because we wanted to  be sure to  capture the interference vacillations which 
require more than one wave, as well as their nonlinear sidebands, we keep the six 
wavemodes ( 1 ,  l ) ,  (2, l),  (3, l ) ,  (1,2),  (1,3), (2,2) in the current computation. In  these 
particular calculations the zonal flow is represented by 10 radial modes. Further 
increases in the zonal flow truncation had no effect on the bifurcations. 

Figures 17 and 18 show the model regime diagrams for both types of forcing. The 
model runs were done by integrating the 44 nonlinear ordinary differential equations 
for the individual spectral amplitudes numerically, and by stepping Q as in the 
experiments. All fixed parameters had the experimental values from table 1. The 
model data were initially processed in the same manner as the experimental data. 
Comparing with figures 2 and 13, one may note the following overall behaviour of the 
model with respect to the laboratory experiments. 

(i) For negative Q, the NIV regime is predicted very nicely. Within this regime the 
model behaviour mimics the experiment quite well (Ohlsen & Hart 1988, give further 
detail). 

(ii) The chaotic regime occurs in the model in roughly the same position in 
parameter space. This is a major improvement over previous models which were 
much too stable. Unfortunately, the model transition is via quasi-periodicity. This 
is because the model does not kill off the NIV as - Q decreases. There results, then, 
a mixture of amplitude vacillation and NIV in the QP model regime. The zonal 
attractor is a 2-torus. So also is the wave attractor (because the zonal and wave 
frequencies are related by integer multiples in NIV). 

(iii) The model’s chaotic region (C), is bounded on the low friction side by periodic 
motions, or even by steady flows a t  the lower F values. Although both the model and 
the experiments have periodic windows (many more can be observed in the model), 
this return to a periodic or steady regime is not found in the experiments. 

(iv) The model fails to capture the experimentally observed phase-locked states 
for positive Q. The model signatures for easterly and westerly forcing are similar, 
while the experiment shows a strong asymmetry with respect to the sign of the 
Rossby number. Model chaos is again a combination of NIV and amplitude 
vacillations. Periodic windows appear in the chaotic regions, but these regions 
ultimately give way again to periodic or steady motions at small Q. 
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Figure 19 shows one example of the typical windowing phenomena in the model 
for F = 22.5. The successive minima of one of the model variables is plotted against 
Q ,  as small steps in this control parameter are made. This bifurcation diagram 
contains many regimes as Q decreases in magnitude towards zero, but only the major 
ones are shown in the figure. Interference vacillation period doubles, then becomes 
mixed with a low-frequency amplitude vacillation in a quasi-periodic regime. The 
first block of noisy-periodic chaos includes roughly equal spectral peaks from NIV 
and amplitude vacillation. When Q hits about -0.018 the amplitude vacillation dies 
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out and the NIV reverse period-doubles to period-one. The second block of chaotic 
behaviour starts a t  about -0.014 and again involves a resurgence of amplitude 
vacillation. The Poincar6 ‘min-maps ’ for this transition show a beautiful wrinkling 
and fracturing of tori, leading to fuzzy tori. Although quite interesting, they are not 
presented here because the laboratory chaos is dominated by amplitude vacillation 
orrly. Furthermore, the final reverse cascade to periodicity a t  Q x -0.006 does not 
agree with experiments, which remain chaotic at small friction. 

6. Conclusions 
Laboratory experiments have been carried out illustrating the transition to chaos 

on the P-plane. For easterly forcing, steady waves give way to periodic ‘nonlinear 
interference ’ vacillations related to mixed-wave dispersion and nonlinear sideband 
forcing of zonal flow oscillations. As the friction parameter Q is decreased in 
magnitude, the higher wavenumber in this mixed wave state dies out, and the 
remaining steady wave then breaks into an amplitude vacillation. This amplitude 
vacillation period-doubles to chaos, but other periodicities (even and odd) occur in 
narrow windows embedded in the chaotic regime. At very small friction (high 
driving), the chaos loses the noisy-periodic character typical of moderate forcing. For 
westerly forcing the nonlinear interference vacillations are less prominent, being 
replaced by amplitude vacillations with phase locking between the two dominant 
waves. The transition to chaos is similar to  the easterly forcing case, and involves 
period-doubling of the amplitude vacillation. Periodic windows are again found in 
the low F ,  weakly chaotic regime. With westerly forcing, the transition to lower 
wavenumbers as Q is decreased, typical of the easterly-forced regimes a t  moderate F ,  
does not occur. 

The observed transition sequence of (possibly finite) period-doubling has occurred 
in models of baroclinic chaos (e.g. Hart 1986; Weng et al. 1986; Pedlosky & Polvani 
1987). However, no models, including the six-wave one briefly discussed here, 
produce a good quantitative description of the observations. Perhaps we should not 
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expect a low-order model to accurately simulate baroclinic flows a t  order one 
supercriticality. The models are certainly useful in that basic interaction processes 
may be discerned, which sometimes have physical relevance to laboratory flows (e.g. 
the NIV). It may be, however, that important physical effects have been left out of 
the models. On the /3-plane, the quasi-geostrophic equations are not invariant with 
respect to the direction of the forcing, as they are on the f-plane. However, the low- 
order model does not capture the observed qualitative difference between the 
easterly and westerly forcing. Perhaps the addition of horizontal shear (induced, for 
example, a t  the viscous sidewall, or by curvature effects a t  the top boundary or the 
interface where the Ekman suction velocity is not truly vertical) may remove this 
relative degeneracy in the model, partly because of the well-known direction- 
dependent shear flow stability condition involving a quantity like U” -/3. The role of 
the rigid sidewall, and its effect on the waves and the zonal flow, needs both 
theoretical and experimental attention. 

It is also possible that ageostrophic effects may be responsible for some of the 
differences between experiment and quasi-geostrophic models, especially in respect 
to the observed differences between easterly and westerly forcing. The internal 
Rossby number, based on the shear across the interface and using the experimental 
parameters, scales as 

0.0035 R,=-. 
Q 

Near the experimental stable-to-unstable transition curves the Rossby number io 
quite small. From figure 2 it  is seen that R, is less than 0.1 for all Froude numbers. 
However, in the NP and PW region a t  low F, R, can be as large as 0.3. Thus one 
interesting question is the effect of non-geostrophy on the nonlinear stability and 
saturation mechanisms in these flows. 

It is hoped that the observations reported here will stimulate further work on this 
important problem, and will provide a useful data set for the verification of theories 
and models. 

The authors thank the National Science Foundation for its support of the research 
reported here under its grant ATM-86- 12736 to the University of Colorado. 
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